FEM Shear of a Composite Block

From FreeCAD Documentation
Revision as of 20:40, 30 January 2018 by HarryvL (talk | contribs)
Tutorial
Topic
Finite Element Analysis
Level
Beginner/Intermediate
Time to complete
30 minutes
Authors
HarryvL
FreeCAD version
0.17.12960 or above
Example files
See also
None

Introduction

In this tutorial we analyze the shear deformation of a composite block consisting of a stiff core embedded in a soft matrix. It demonstrates the use of BooleanFragments and CompoundFilter to create solids for the block and the matrix from two concentric cubes. This work-flow ensures that separate MeshRegions, Materials and Boundary Conditions can be defined for the block and the surrounding matrix. The CalculiX results clearly show the effect of the stiff core on the response of the composite block.

Geometry

First we create two concentric cubes, one size 10mm and the other size 5mm. This is done in the workbench "Part". By default the cube is placed at the origin [0, 0, 0], so the smaller cube needs to be scaled down and shifted by changing the settings in the Data tab of the property panel. To make the core visible, the Transparency of the outer block is set to 50 in the View tab of the property panel. The result is shown below.



Mesh and Mesh Regions

From workbench FEM we create an Analysis container. This will contain all definitions required for the CalculiX analysis and its results. Note that this Analysis container needs to be activated (right-click and select "Activate analysis") whenever re-loading the file or after switching back from other analyses. To start the meshing process, highlight the CompoundFilter in the Object Tree and activate the meshing dialog "Mesh > FEM mesh from shape by Gmsh". Leave the dialog by clicking OK.

A Mesh object is now created in the Object Tree. Highlight this object and create a Mesh Region object via "Mesh > FEM mesh region". Open the dialog box for this Mesh Region by double clicking and tick the radio button for Solid. Next click the "Add Reference" button and select the Cube_Matrix object in the Graphical Window. This should add a reference to "Box:Solid1" in the object list of the Mesh Region. Finally specify the maximum element size for this region (5mm in the current analysis). Leave the dialog by clicking OK.


File:Figure 2 Mesh Regin for Matrix.png


Next make the Cube_Matrix object invisible by highlighting it and pressing the space bar. In a similar way make the Cube_Core visible. Now create a new Mesh object as above and select the Cube_Core object in the Graphical Window. This time the reference list should show "Box001:Solid1", as below. This time we chose a maximum element size of 1mm


File:Figure 3 Mesh Region for Core.png


Material Assignment

Material is assigned to Mesh Regions via a SolidMaterial object. In this tutorial we assign two materials; one for the Matrix and one for the Core.

Start by making the Cube_Matrix visible as in the above section. Then create a SolidMaterial object via menu option "Model > FEM material for solid". Open the dialog and tick the radio button for Solid, press "Add Reference" and select the Cube_Matrix from the Graphical Window. The reference list should now show "Box:Solid1", as before. We assign ABS material to this region, with a Young's modules approximately 1% that of steel.



Next make Cube_Matrix invisible and Cube_Matrix visible. Repeat the above procedure for Cube_Core. This time we assign CalculiX-Steel, which is much stiffer than the ABS material for the Matrix.



Sliding Support

To create a "Simple Shear" condition for the composite block the deformations at the boundaries need to be unconstrained. To achieve this, the block is placed on a sliding support. This leaves three degrees of freedom in the plane of the support (2 translations and a rotation) and those will be constrained later. (Note: as the plane prevents warping of the face, it still induces a minor constraint, which could be eliminated by a different choice of boundary conditions). To create a sliding boundary condition add a FemConstraintDisplacement object (Model > Mechanical Constraints > Constraint displacement). With the dialog box open first select the face to which the boundary conditions is to be applied and then click the Add button. As the block is allowed to slide in the x-y plane, only the "Fixed" radio button for "Displacement z" is selected and the other radio buttons are all left as "Free".


File:Figure 6 Sliding Support.png


Fixed Nodes

To prevent rigid body motion in the plane of sliding, three independent degrees of freedom need to be eliminated. To achieve this, one vertex in the plane of sliding is constrained in x and y direction (eliminating 2 degrees of freedom) and one vertex is fixed in the x direction (eliminating the last degree of freedom). For this purpose two additional FemConstraintDisplacement objects are created and the result is shown below.


File:Figure 7 Fixed Points.png


Shear Forces

The final step in the Analysis definition is the application of loads. To create a Simple Shear condition, a set of shear loads is applied as shown below. Each load is chosen as 1000 N and considering the directions of application, force and moment equilibrium is achieved for all translation and rotional degrees of freedom.


File:Figure 8 Shear Forces.png


CalculiX Analysis

Under Development


File:Figure 9 CalculiX File.png


CalculiX Results

Under Development




File:Figure 12 Deformed Mesh Clipped View.png


Internal Boundary Conditions (Under Development)

Under Development