Создание анализа методом конечных элементов

From FreeCAD Documentation
Jump to: navigation, search
This page is a translated version of the page Manual:Creating FEM analyses and the translation is 42% complete.

Outdated translations are marked like this.
Other languages:
English • ‎français • ‎italiano • ‎română • ‎русский

Метод конечных элементов (сокращённо МКЭ) это большой раздел математики, но в FreeCAD мы подразумеваем его как способ подсчитать разспространение воздействий в объёмном объекте нарезанием его на малые участки, и анализируя влияние каждого элемента на своих соседей. У него есть много приложений в проектировании и электромагнитных полях, но здесь мы будем углубляться в то, что используется в FreeCAD, расчёт деформаций объектов под воздействием силы и веса.

В FreeCAD такое моделирование сделано через верстаке FEM. Оно включает различные шаги: подготовка геометрии, установка материала, создание полигональной сетки, деление на малые участки, как это делалось в главе Подготовка для объёмной печати, и в конце калькуляция модели.

Exercise fem 01.jpg

Подготовка FreeCAD

Моделирование производится сторонней программой, используемой FreeCAD для получения результатов. Поскольку симуляторов для моделирования по МКЭ с открытыми исходными кодами несколько, верстак FEM сделан способным использовать несколько из них. Тем не менее, пока полностью поддерживается только CalculiX. Так же для генерации разделяющей сетки требуется другая программа, NetGen. Детальная инструкция для установки этих двух компонентов дана в документации FreeCAD.

Подготовка геометрии

Начнём с дома, который мы моделировали в разделе Моделирование BIM. Нам потребуются некоторые изменения для приспособления модели к расчёту по МКЭ. В это входит исключение объектов, которые мы не хотим учитывать при вычислении, таких как двери и окна, и объединение всех остальных объектов в один.

  • Загрузим модель дома, которую мы сделали ранее
  • Удалим или скроем страницу, сечения и виды сверху с размерными линиями, оставив только саму модель
  • Скроем окно, дверь и плиту пола
  • Так же скроем металлические балки крыши. Поскольку они сильно отличаются от остального дома, этим исключением мы упростим наши вычисления. Вместо этого мы предположим что плита крыши напрямую положена на стены.
  • Теперь положим плиту крыши вниз, чтобы она легла на верх стен: Редактируем объект Rectangle, который взят как база для плиты, и изменим его параметр Placement->Position->X с 3.18m на 3.00m
  • Теперь наша модель очищена:

Exercise fem 02.jpg

  • Верстак FEM пока может вычислить деформацию лишь единого объекта. Поэтому нам надо объединить наши два объекта, стены и плиту. Переключимся на верстак Part, выделим оба объекта и нажмём Part Union.png Union. Теперь мы получили объединённый объект:

Exercise fem 03.jpg

Создание анализа

  • Теперь мы готовы начать анализ по МКЭ. Переключимся на верстак FEM
  • Выделим объединённый объект
  • Нажмём кнопку Fem Analysis.png New Analysis
  • Будет создан новый механический анализ и будет открыта панель установок. Здесь Вы сможете определить параметры создания полигональной сетки для МКЭ. Важнее всего для настройки отредактировать параметр Max Size, который определяет в миллиметрах максимальный размер каждого элемента сетки. Сейчас мы оставим значение по умолчанию, равное 1000:

Exercise fem 04.jpg

  • После нажатия OK нескольких секунд вычислений наша сетка МКЭ готова:

Exercise fem 05.jpg

  • Теперь мы можем определить материал нашей сетки. Это нужно, поскольку наш объект реагирует на приложенные силы по-разному в зависимости от прочности материала. Выберем объект анализа, и нажмём кнопку FEM MaterialSolid.png New Material.
  • Будет открыта панель задач, позволяющая выбрать материал. В списке материалов выберем Concrete-generic (бетон), и нажмём OK.

Exercise fem 06.jpg

  • Теперь мы готовы приложить силы. Начнем с указания неподвижных поверхностей, опирающихся на землю. Нажмём кнопку FEM ConstraintFixed.png Constraint fixed.
  • Выделим нижнюю поверхность строения и нажмём OK. Нижняя поверхность теперь показана как неподвижная:

Exercise fem 07.jpg

  • Теперь мы добавим нагрузку на верхнюю поверхность, которая должна представлять, например, большой вес, распределённый по крыше. Для этого мы используем ограничение давления. Нажмём кнопку FEM ConstraintPressure.png Constraint pressure.
  • Нажмём верхнюю поверхность крыши, установим давление на 10MPa и кликнем кнопку OK. Сила приложена:

Exercise fem 08.jpg

  • Теперь мы готовы начать вычисления. Выделим объект CalculiX, и нажмём кнопку FEM ControlSolver.png Start Calculation.
  • В панели задач, которая будет открыта, нажмите сначала кнопку Write .inp file для создания входного файла для CalculiX, затем кнопку Run CalculiX. Несколькими мгновениями позднее вычисления будут выполнены:

Exercise fem 09.jpg

  • Теперь можно посмотреть результаты. Закройте панель задач, и Вы увидите новый объект Results, который добавлен к вашему анализу.
  • Дважды кликните объект Results.
  • Установите тип результата, который Вы хотите увидеть на сетки, например, "abs displacement", отметтьте под заголовком Водоизмещение чекбокс show, и передвигайте слайдер возле него. Вы сможете увидеть деформацию, увеличивающуюся по мере увеличения силы:

Exercise fem 10.jpg

Показываемые верстаком FEM результаты, разумеется, пока не достаточны для принятия реальных решений о размерах и материалах, тем не менее, они уже дают точную информацию о том, как силы проходят через структуру и где находятся слабые места, которые испытывают большее воздействие.

Загрузки

Читать далее